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Abstract. If we work directly with the dynamic matrix, the spectral moments method allows 
the direct determination of the response of harmonic materials without any calculation of 
eigenvalues or eigenvectors. The method selects directly in the frequency spectrum the 
active modes with the right magnitude. We present here a new development of this method 
and we apply it to the determination of the inelastic neutron scattering cross section of 
systems. We illustrate these results via applications to several models: a perfectly dimerised 
chain, chains with incommensurate distortions and quasi-crystals. 

1. Introduction 

Many physical properties of a many-body system are closely related to the spectrum of 
the Schrodinger equation. Of particular interest for physical applications are the density 
of states and the behaviour of the wavefunction (localised, extended, chaotic or non- 
chaotic). Examples include harmonic solids, band theory and the Ising model. Recently, 
many physical systems have been made which have a quasi-crystal or fractal structure 
(Family and Landau 1984). The vibrational properties and mechanical behaviour of 
these systems are very different from those of ordinary objects, and calculations of the 
physical properties of these non-crystalline systems require special techniques that do 
not make use of the translational invariance. The problem of determining the vibrational 
properties of a disordered system was first solved by Dyson (1953) for a linear chain and 
these systems have been widely studied since the work of Dean (1960). Ingenious 
methods were also developed to study some other properties of one-dimensional systems 
(Mattis and Lieb 1966). Unfortunately, neither the methods nor the results can in general 
be extended to the three-dimensional case. Also several different approaches have been 
developed; the most important are the recursion method (see Haydock et a1 1972) and 
for a review see Haydock (1980)) and the moments method (Cyrot-Lackmann 1967, 
Gaspard and Cyrot-Lackmann 1973). 

The recursion method is an adaptation of the Lanczos (1.950) algorithms to solid state 
physics. In this method, we first choose a particular vector and then set up new orthogonal 
bases (Krylov space) (Saad 1981). In this new base the Hamiltonian takes a tridiagonal 
form. The eigenvalues of this matrix are easily obtained by iteration. This method is 
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numerically very stable and fast, needs to store only twovectors and is unique in obtaining 
the local and global properties of local orbital interactions en masse (Kelly 1980, Ishii 
and Fujiwara 1980). However, the continued-fraction coefficients cannot be averaged 
as these are strongly non-linear on the densityof state, and knowledge of the total density 
of state involves the sum of the local densities of states (Heine 1980). A second method 
makes use of the moments of the density of state. Since the work of Montroll (1942), 
various computational methods have been devised: the modified moments method 
(Blumstein and Wheeler 1973, Wheeler et a1 1974), the generalised moments method 
(Cyrot-Lackmann 1967, Gaspard and Cyrot-Lackmann 1973, Lambin and Gaspard 
1982) which has the advantage of both moments method (linearity of the moments) 
and the recursion method (stability). Recently, Jurczek (1985) proposed an improved 
moments method that permits one to determine exactly the coefficients of the continued- 
fraction representation of the electronic density of states. He showed, also, that both 
methods are equivalent. 

However, it is well known that the density of states often exhibits many gaps and 
sharp features. For such systems the representations of density of states from moments 
suffer from the inability to reproduce accurately the singularities. We are faced, in 
practice, with the asymptotic behaviour of the continued-fraction coefficients (Turchi et 
a1 1982). Furthermore, any of these methods permits us to compute easily and with 
accuracy the eigenstates of the systems. It is well known that, in particular for large 
systems, if the eigenvalues can, in principle, be easily found, the determination of the 
eigenvectors with acceptable accuracy is a non-trivial problem (Isaacson and Keller 
1966, Dean 1972). However, the determination of many physical properties requires 
good knowledge of the eigenstates of the Schrodinger equation or eigenvectors of the 
dynamic matrix. For instance, it is well known that, for harmonic solids, it is necessary 
to compute the eigenvectors to calculate the infrared absorption or the Raman scattering 
spectra of the system. 

For harmonic solids, these difficulties are partially removed if we calculate directly 
the response function of the system (Galtier and Benoit 1981). While for electronic 
systems the calculus of the response function involves transitions between different 
states, for harmonic systems, from Bose statistics and properties of the harmonic oscil- 
lator, the calculation of the response function corresponds to the determination of the 
one-phonon density of states weighted by the optical activity of the modes. Using these 
properties, we have shown (Benoit 1987, hereafter referred to as I) that the moments 
method could be applied to direct determination with the exact magnitude of the infrared 
absorption or ( T  = 0 K) Raman scattering spectra. The method that we shall call the 
spectral moments method is fast, stable and linear and requires usually the determination 
of a few coefficients of the continued fraction. 

In I, this method was applied only to the determination of the activity of optical 
processes. For these processes the momentum transfer is equal to zero. We show here 
that the spectral moments method can also be applied to the determination of the 
inelastic neutron scattering cross section of solids. In such a process, it is necessary to 
determine the spectrum of scattered particles for many different momentum transfers. 
So, in the following, we show how the spectral moments method can be applied to the 
determination of the inelastic neutron scattering cross section and how it is possible to 
obtain easily a great number of spectral generalised moments for a given direction of the 
momentum transfers. In 9 3, to test the method, we determine the inelastic neutron 
scattering cross section of a perfectly dimerised chain and a chain with incommensurate 
distortions. Finally, we determine the response function of a quasi-crystal; the properties 



Inelastic neutron scattering cross section 337 

of the eigenstates of the quasi-periodic structure have been known to be difficult to 
determine. 

2. General theory 

For a harmonic crystal, it can be shown (Peretti and Jouanin 1965) that the inelastic 
neutron scattering cross section is given by 

with 

where n(w) = l/[exp(ho/kT) - 11, hq and hw are the momentum and energy trans- 
ferred by the neutron to the scattering system, ko and kare the initial and final wavevectors 
of the neutron, c, the scattering length factors of the nth nucleus, exp( - w n )  the Debye- 
Waller factor, if the position of the nth atom, U, the frequency and el the eigenvector of 
the normal modej.  a(q, w )  is anti-symmetric in w .  As the eigenvalues of the dynamic 
matrix D are the squares of the frequencies, it follows that it is not possible to use 
equation (1) directly in a moments method. However, to check a dynamic model, it is 
only necessary to evaluate, for instance, the low-temperature spectra at low frequencies. 
So we now evaluate a function a'(q, 0) which is identical with a(q, U )  for T- 0 and 
w S 0 and is symmetric. Let a'(q, w )  be defined by 

k if,(4) * 4I2(6(w - 0,) + 6(w + w, ) )  
a'(q, w )  = p E (3) 

u = w 2  A,  = U," (4) 

gYq, U) = a'(q, U )  = p If,(d * 4I26(u - " 1 .  ( 5 )  

I 2w1 

We see that d ( q ,  w )  is a function of the square of the frequency. We obtain with 

k 
I 

Defining a structure factor vector IF(q)) by 

equation (3) can now be expressed as 

It is easy to show (see I) that 
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To calculateg"(q, U) ,  we need to determine R"(q, 2 ) .  This can be achieved by expanding 
Rn(q, z )  in a continued-fraction expansion: 

qq, z )  = a o / u z  - a l  - b , / f z  - a2  - b2/rZ - a3 - b 3 / ( .  . .)]>I. (io) 

The coefficients bs are positive; us and b, are real and are correlated to the moments of 
gn(q ,  U). It is possible to show that the coefficients a, and bs are given by the following 
relations (Jurczek 1985): 

as+, = %/%s bs = V s , s / V s - l , s - l  (11) 

with a. = u ~ , ~ .  
The generalised moment us,$ and V , , ,  are given in I by 

Now, with the help of equations (11)-(13), it is possible to determine exactly the 
successive coefficients a, and b,. However, in practice, the use of equations (12) involves 
a great number of products and the method is not very convenient for very large systems. 
Let us show that it is possible to simplify the computation of the moments. Equations 
(12) can be written 

v s . s  = Tr[Q(q>Ps (DIPS (Dl1 (14) 

c s . s  = Tr[Q(q)Ps(D)DPs(D)l (15) 

with the operator Q(q)  given by 

where N is a norm and we have, without loss of generality, that 

(F'(q)lF'(q)) = 1. 
It follows from (18) and (20) that 

Tr[Q'(q)] = Tr[Q'(q)"] = 1 Vn.  
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Equation (21) shows that all eigenvalues are equal to zero except one which is equal to 
unity. Let A I  be this value. We obtain 

A, = 1  Ai = o  for i  # 1. (22) 
From (18) and (20), it is clear that the eigenvectors IA,), corresponding to the eigenvalue 
A are given by 

I&) = IF”) (23) 

Q’(4)IAl) = l w w Y q ) l ~ d  = IW2N = U l ) .  (24) 

since 

As lAl) is known, it is possible by Schmidt’s orthogonalisation method (Isaacson and 
Keller 1966) to generate a set of linear independent vectors which are the eigenvectors 
of operator Q’(q). The matrix U which diagonalises Q’(q) may be found by compounding 
the eigenvectors of Q’(q)  into a matrix. If Qd is the diagonal form of Q’(q), we have 

Qd = U+Q’(q)U (25) 
with 

( Q d l l l  = 1 
(Qdlij = 0 otherwise. 

Now we substitute equation (25) into (14) and, taking into account (17), one obtains 

vs.s = (~/~0>1~12~Tr[Q’(q)Ps(D‘(q))Ps(D’(~))l 

= ( W O )  141 N T W Q d  U + Ps (D ’ ( 4 )  ) P ,  (D ’ ( 4 )  11. (27) 

v s , s  = (k/k0>1q12NTr[QdPs(Dt(q))Ps(Dt(q))1 (28) 

Next, taking into account the cyclic properties of the trace, one obtains 

with D’(q) such that 

(aniD’(q)IPn’) = (aniDIPn’) exp[iq (I-: - I-:,)] 
and 

Dt(q) = U+D’(q)U. (30) 

Fs,s = ( k / k o ) / q / 2 N  Tr[QdPs (Dt (q>lDt ( q l P s  (Dt ( q ) ) ]  (31) 

v s , s  = (~/~o)lq12N[Ps(Dt(q))Ps(D,(q))l 11. (32) 

f s , s  = (k/k0)IqI2N[Ps(Dt (q))Dt(q)Ps(Dt(q))111. (33) 

We obtain in the same way for equation (15) 

and, now taking into account equation (26), one obtains for (28) and (31) 

Finally, the one-phonon differential cross section (3), can easily be obtained from (8), 
( l l ) ,  (32) and (33). We consider only the case of the coherent scattering by materials 
and assume that the experimental procedure is the ‘constant-q’ method (Brockhouse 
1966). Now, if we neglect the dependence of the Debye-Waller factor on q ,  we have the 
following. 
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(i) The determination of the moments requires the determination of only one term 
of the matrix products. 

(ii) The matrix U is independent of the magnitude of the scattering vector q. The 
matrix U depends only on the direction of q and the physical coefficients of the system. 
So it is necessary to compute U only once for every direction of q and not for every 
magnitude of the scattering vector. 

(iii) From equations (32) and (33), we observe that it is necessary to compute only 
one line of the matrix P,(D,(q)). 

(iv) D,(q) is not the Fourier transform of the dynamic matrix but corresponds to the 
representation of the operator D in the base of eigenvectors I&), every term being 
multiplied by the phase factor exp[iq (r! - r : , ) ] .  

In practice, one calculates a finite number of coefficients a, and b, and we are then 
faced with the problem of the termination of the continued fraction. However, with the 
method developed here, it is easy to calculate the spectrum for every step of the iteration. 
After several tests, we employ here the same type of termination that was used for a 
dimerised chain and chains with topological defects in I. In the following, we illustrate 
this method by determining the inelastic neutron scattering cross section for several 
models. 

3. Illustrations of the method 

Let us consider a chain of N masses, each coupled to its nearest neighbours. We 
study the longitudinal vibrations of this chain. Firstly, as for the study of the dielectric 
properties of the system in I, we consider a perfectly dimerised chain. The elastic 
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0 

Figure 1. The inelastic neutron scattering cross section for 12 values of the scattering vector 
for a perfect chain with m = 1, k l  = 0,100, k2 = 0.025 and with 32 spectral moments. 
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Figure 2. The inelastic neutron scattering cross section for 12 values of the scattering vector 
for a chain with incommensurate soliton lattice with m = 1, k ,  = 0.100, k z  = 0.025, a = 
V%, z = 1.5 and with 32 spectral moments. 

constants are given by 

@(n,  n + 1) = ( k ,  + k2)/2 + ( k ,  - k,)/4[p(n + 1) - d n ) l  (34) 
with p(n)  = (- 1)" for the dimerised chain. It is well known that for this system the 
frequencies are given for the acoustic ( j  = 1) and optic ( j  = 2) modes by (Seitz 3 940) 

[m,(q)12 = u(k, + k 2 )  + ( - w ( k l  + k, )*  - 4k,kZ[sin(qa)i2}1/2n/m (35) 
with q = 2np/Na and -N/2 < p 6 N/2.  a is the lattice parameter. Now we apply the 
spectral moments method. We choose m and c, equal to unity and we neglect the 
dependence on q in the front term in (32) and (33). In order to check the accuracy of the 
method, we compare the frequencies of the peaks of the inelastic cross section for several 
scattering vectors q between 0 and 2n/a, with the exact values given by (35). 

The results are shown in figure 1. We observe that the acoustic modes are principally 
active in the first Brillouin zone while the optic modes are principally active in the second 
Brillouin zone. However, we observe some weak peaks corresponding to optical modes 
in the first Brillouin zone and acoustic modes in the second Brillouin zone (not visible 
on the figure). We recall that for the undimerised chain the acoustic and optic modes are 
respectively strictly active in the first and second Brillouin zones. The values of the 
frequencies calculated by the spectral moment method agree very well with the values 
obtained with (35). 

We now consider a dimerised chain with solitons. We choose a soliton lattice incom- 
mensurate with the crystal lattice. The elastic constants are obtained with the help of 
(34) with the order parameter p(n) given by: 

p(n) = (- 1)" tanh 
1 
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Figure 3. Construction of a one-dimensional quasi-crystal by the projection method. 

with I ,  = ia, where a/. is an incommensurate number. 
The inelastic scattering cross section for different values of q are given in figure 2. It 

can be seen that the system presents a new scattering peak in the phonon gap. This result 
agrees with the frequency distribution calculated in I by the moments method for a chain 
with solitons as defects. However, we now find that the new mode is active in inelastic 
neutron scattering experiments for 141 = x/a, i.e. for the boundary of the first Brillouin 
zone of the unperturbed chain. This result is in agreement with the conclusion of Su et 
al(1980) that the defect state arises from combinations of the zone boundary states. 

Finally we consider a quasi-crystal; the properties of the eigenstates of the quasi- 
periodic structure have been known to be difficult to determine (Luck 1986, Kohmoto 
et aZ1987). We choose the well known projection method to generate an almost periodic 
tiling of the chain with short and long segments of respective lengths s = sin 8 and c = 
cos 0 where 8 is the angle between the x axis and the strip used to construct the tiling 
(figure 3). We choose tan 8 = h(v.5 - 1). In order to generalise the results obtained by 
Luck (1986), we use a nearest-neighbour potential (short-range forces) and a screened 
Coulombic potential (long-range forces). The nearest-neighbour force constants for 
short and long bounds, respectively, are taken as equal to t and 1, which correspond to 
the values used in the work of Luck (1986) for the short-range part. The long-range 
potential is given by 

where r, represents the position of the nth atom, and A and a are constants of the 
potential. It is not possible with such a potential to use for instance the transfer matrix 
method. Furthermore the properties of the eigenstates of the quasi-periodic structure 
are known to be difficult to determine. We have shown in figure 4(a) the integrated 
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Figure 4. The integrated density of states for a quasi-crystal (a) with short-range forces and 
(b j  with short- and long-range forces. The short-range force constants for short and long 
bounds, respectively, are taken equal to 4 and 1 ( A  = 0.01; (Y = 0.1). 

density of states for the model with short-range forces and in figure 4(b) the integrated 
density of states for the model with short- and long-range forces (equation (37)) up to 
third-neighbour forces. We see that with the long-range forces the same structure for 
the density spectrum is obtained as with short-range forces. The Cantor structure is quite 
apparent. This structure is certainly intimately related to the quasi-periodicity and not 
to the range of the forces. In I, we illustrated the spectral moments method by calculating 
the optical properties of materials. However, it is now possible to take into account, in 
the determination of the optical properties, the improvements developed in the present 
paper. So we have given in figure 5 the infrared absorption of a quasi-crystal with 800 
atoms. We observe that many modes are now infrared active and that the spectrum is 
quite different from the spectrum of a disordered system (see I). We now study the 
scattering properties of a quasi-crystal with 400 atoms. The general results for different 
scattering vectors are shown in figure 6. We observe that, for small q ,  only low-frequency 
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Figure 5. The imaginary part of the dielectric susceptibility obtained by the spectral moments 
method for a quasi-crystal with short- and long-range forces with 32 spectral moments. 

modes are active in the scattering processes while, for a relatively large q,  many low- 
and high-frequency modes become active. In the limit of the values of q concerned here, 
the behaviour of the inelastic cross section of a quasi-crystal is quite different from the 
behaviour of inelastic scattering of a periodic system. 

4. Conclusion 

In I, we showed that the spectral moments method is a powerful tool for determining 
the dielectric and light scattering properties of various systems. In this paper, we have 

A c .- E 53 
L 

26 

Frequency 

Figure 6. The inelastic neutron scattering cross section for 12 values of the scattering vector 
for a quasi-crystal with short- and long-range forces, with 32 spectral moments. 
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shown that the inelastic neutron cross section a ( w ,  q )  can be obtained very easily, 
directly from the dynamic matrix without any calculation of eigenfrequencies and 
eigenvectors. We have illustrated this method by determining the inelastic neutron 
scattering cross section for three models: the first model concerned the perfect chain and 
was used to test the accuracy of the calculation, and the second model was an application 
to a chain with defects, i.e. a soliton lattice, The results of the calculations are in complete 
agreement with the previous results concerning this type of model. The last application 
concerned quasi-crystals. This type of application is very interesting because the fre- 
quency distribution is a Cantor set and it is well known that in the presence of gaps the 
determination of the infinite tail of the continued fraction is difficult. However, with the 
spectral moments method the problem of determination of the infinite tail is not so 
critical and we have shown that the calculation of the scattering properties of a quasi- 
periodic structure could be easily performed. For this last example, we have shown that 
the Cantor-set-type spectrum is independent of the range of forces used and we have 
reported the infrared activity and the inelastic cross section of modes for several momen- 
tum transfers. The results show that, although the structure of the chain presents only 
two types of different bond, the dynamic properties are fundamentally different from 
the properties of periodic or disordered materials. It is evident that quasi-periodicity 
plays a central role in these systems. 
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